1,901 research outputs found

    Co-targeting HGF/cMET Signaling with MEK Inhibitors in Metastatic Uveal Melanoma.

    Get PDF
    Patients with metastatic uveal melanoma usually die within 1 year of diagnosis, emphasizing an urgent need to develop new treatment strategies. The liver is the most common site of metastasis. Mitogen-activated protein kinase kinase (MEK) inhibitors improve survival in V600 BRAF-mutated cutaneous melanoma patients but have limited efficacy in patients with uveal melanoma. Our previous work showed that hepatocyte growth factor (HGF) signaling elicits resistance to MEK inhibitors in metastatic uveal melanoma. In this study, we demonstrate that expression of two BH3-only family proteins, Bim-EL and Bmf, contributes to HGF-mediated resistance to MEK inhibitors. Targeting HGF/cMET signaling with LY2875358, a neutralizing and internalizing anti-cMET bivalent antibody, and LY2801653, a dual cMET/RON inhibitor, overcomes resistance to trametinib provided by exogenous HGF and by conditioned medium from primary hepatic stellate cells. We further determined that activation of PI3Kα/γ/δ isoforms mediates the resistance to MEK inhibitors by HGF. Combination of LY2801653 with trametinib decreases AKT phosphorylation and promotes proapoptotic PARP cleavage in metastatic uveal melanoma explants. Together, our data support the notion that selectively blocking cMET signaling or PI3K isoforms in metastatic uveal melanoma may break the intrinsic resistance to MEK inhibitors provided by factors from stromal cells in the liver

    Probing the A1 to L10 Transformation in FeCuPt Using the First Order Reversal Curve Method

    Full text link
    The A1- L10 phase transformation has been investigated in (001) FeCuPt thin films prepared by atomic-scale multilayer sputtering and rapid thermal annealing (RTA). Traditional x-ray diffraction is not always applicable in generating a true order parameter, due to non-ideal crystallinity of the A1 phase. Using the first-order reversal curve (FORC) method, the A1 and L10 phases are deconvoluted into two distinct features in the FORC distribution, whose relative intensities change with the RTA temperature. The L10 ordering takes place via a nucleation-and-growth mode. A magnetization-based phase fraction is extracted, providing a quantitative measure of the L10 phase homogeneity.Comment: 17 pages, 5 figures, 4 page supplementary material (4 figures

    Automated Performance Characterization of DSN System Frequency Stability Using Spacecraft Tracking Data

    Get PDF
    This software provides an automated capability to measure and qualify the frequency stability performance of the Deep Space Network (DSN) ground system, using daily spacecraft tracking data. The results help to verify if the DSN performance is meeting its specification, therefore ensuring commitments to flight missions; in particular, the radio science investigations. The rich set of data also helps the DSN Operations and Maintenance team to identify the trends and patterns, allowing them to identify the antennas of lower performance and implement corrective action in a timely manner. Unlike the traditional approach where the performance can only be obtained from special calibration sessions that are both time-consuming and require manual setup, the new method taps into the daily spacecraft tracking data. This new approach significantly increases the amount of data available for analysis, roughly by two orders of magnitude, making it possible to conduct trend analysis with good confidence. The software is built with automation in mind for end-to-end processing. From the inputs gathering to computation analysis and later data visualization of the results, all steps are done automatically, making the data production at near zero cost. This allows the limited engineering resource to focus on high-level assessment and to follow up with the exceptions/deviations. To make it possible to process the continual stream of daily incoming data without much effort, and to understand the results quickly, the processing needs to be automated and the data summarized at a high level. Special attention needs to be given to data gathering, input validation, handling anomalous conditions, computation, and presenting the results in a visual form that makes it easy to spot items of exception/ deviation so that further analysis can be directed and corrective actions followed

    Dose-Duration Reciprocity for G protein activation: Modulation of kinase to substrate ratio alters cell signaling

    Get PDF
    In animal cells, activation of heterotrimeric G protein signaling generally occurs when the system’s cognate signal exceeds a threshold, whereas in plant cells, both the amount and the exposure time of at least one signal, D-glucose, are used toward activation. This unusual signaling property called Dose-Duration Reciprocity, first elucidated in the genetic model Arabidopsis thaliana, is achieved by a complex that is comprised of a 7-transmembrane REGULATOR OF G SIGNALING (RGS) protein (AtRGS1), a Gα subunit that binds and hydrolyzes nucleotide, a Gβγ dimer, and three WITH NO LYSINE (WNK) kinases. D-glucose is one of several signals such as salt and pathogen-derived molecular patterns that operates through this protein complex to activate G protein signaling by WNK kinase transphosphorylation of AtRGS1. Because WNK kinases compete for the same substrate, AtRGS1, we hypothesize that activation is sensitive to the AtRGS1 amount and that modulation of the AtRGS1 pool affects the response to the stimulant. Mathematical simulation revealed that the ratio of AtRGS1 to the kinase affects system sensitivity to D-glucose, and therefore illustrates how modulation of the cellular AtRGS1 level is a means to change signal-induced activation. AtRGS1 levels change under tested conditions that mimic physiological conditions therefore, we propose a previously-unknown mechanism by which plants react to changes in their environment

    Imaging Surface Acoustic Wave Dynamics in Semiconducting Polymers by Scanning Ultrafast Electron Microscopy

    Get PDF
    Understanding the mechanical properties of organic semiconductors is essential to their electronic and photovoltaic applications. Despite a large volume of research directed toward elucidating the chemical, physical and electronic properties of these materials, little attention has been directed toward understanding their thermo-mechanical behavior. Here, we report the ultrafast imaging of surface acoustic waves (SAWs) on the surface of the Poly(3-hexylthiophene-2,5-diyl) (P3HT) thin film at the picosecond and nanosecond timescales. We then use these images to measure the propagation velocity of SAWs, which we then employ to determine the Young's modulus of P3HT. We further validate our experimental observation by performing a semi-empirical transient thermoelastic finite element analysis. Our findings demonstrate the potential of ultrafast electron microscopy to not only probe charge carrier dynamics in materials as previously reported, but also to measure their mechanical properties with great accuracy. This is particularly important when in situ characterization of stiffness for thin devices and nanomaterials is required

    Combination therapy strategies against multiple-resistant streptococcus suis

    Get PDF
    <p>Streptococcus suis is a major swine pathogen, an emerging zoonotic agent responsible for meningitis, endocarditis and septicaemia followed by deafness in humans. The development of antimicrobial resistance in S. suis increases the risk for therapeutic failure in both animals and humans. In this study, we report the synergism of combination therapy against multi-resistant S. suis isolates from swine. Twelve antibiotic profiles were determined against 11 S. suis strains. To investigate their synergistic/antagonistic activity, checkerboard assay was performed for all the possible combinations. In-vitro killing curves and in-vivo treatment trials were used to confirm the synergistic activity of special combinations against S. suis dominant clones. In this study, 11 S. suis isolates were highly resistant to erythromycin, clindamycin, trimethoprim/sulfamethoxazole, and tetracycline with ratios of 80–100%, and the resistance percentages to enrofloxacin, florfenicol, and spectinomycin were ~50%. The checkerboard data identified two combination regimens, ampicillin plus apramycin and tiamulin plus spectinomycin which gave the greatest level of synergism against the S. suis strains. In-vitro kill-curves showed a bacterial reduction of over 3-logCFU with the use of combination treatments, whilst the application of mono-therapies achieve less than a 2-logCFU cell killing. In-vivo models confirm that administration of these two combinations significantly reduced the number of bacterial cells after 24 h of treatment. In conclusions, the combinations of ampicillin plus apramycin and tiamulin plus spectinomycin showed the greatest synergism and may be potential strategies for treatment of multi-resistant S. suis in animal.</p

    Structure and mechanism of a methyl transferase ribozyme

    Get PDF
    Known ribozymes in contemporary biology perform a limited range of chemical catalysis, but in vitro selection has generated species that catalyze a broader range of chemistry; yet, there have been few structural and mechanistic studies of selected ribozymes. A ribozyme has recently been selected that can catalyze a site-specific methyl transfer reaction. We have solved the crystal structure of this ribozyme at a resolution of 2.3 Å, showing how the RNA folds to generate a very specific binding site for the methyl donor substrate. The structure immediately suggests a catalytic mechanism involving a combination of proximity and orientation and nucleobase-mediated general acid catalysis. The mechanism is supported by the pH dependence of the rate of catalysis. A selected methyltransferase ribozyme can thus use a relatively sophisticated catalytic mechanism, broadening the range of known RNA-catalyzed chemistry. [Image: see text
    • …
    corecore